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Abstract

Background: The decline of coral reefs globally underscores the need for a spatial assessment of their exposure to multiple
environmental stressors to estimate vulnerability and evaluate potential counter-measures.

Methodology/Principal Findings: This study combined global spatial gradients of coral exposure to radiation stress factors
(temperature, UV light and doldrums), stress-reinforcing factors (sedimentation and eutrophication), and stress-reducing
factors (temperature variability and tidal amplitude) to produce a global map of coral exposure and identify areas where
exposure depends on factors that can be locally managed. A systems analytical approach was used to define interactions
between radiation stress variables, stress reinforcing variables and stress reducing variables. Fuzzy logic and spatial
ordinations were employed to quantify coral exposure to these stressors. Globally, corals are exposed to radiation and
reinforcing stress, albeit with high spatial variability within regions. Based on ordination of exposure grades, regions group
into two clusters. The first cluster was composed of severely exposed regions with high radiation and low reducing stress
scores (South East Asia, Micronesia, Eastern Pacific and the central Indian Ocean) or alternatively high reinforcing stress
scores (the Middle East and the Western Australia). The second cluster was composed of moderately to highly exposed
regions with moderate to high scores in both radiation and reducing factors (Caribbean, Great Barrier Reef (GBR), Central
Pacific, Polynesia and the western Indian Ocean) where the GBR was strongly associated with reinforcing stress.

Conclusions/Significance: Despite radiation stress being the most dominant stressor, the exposure of coral reefs could be
reduced by locally managing chronic human impacts that act to reinforce radiation stress. Future research and management
efforts should focus on incorporating the factors that mitigate the effect of coral stressors until long-term carbon reductions
are achieved through global negotiations.
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Introduction to global and local stressors is needed so that appropriate counter-

measures can be formulated and implemented. The management

Corals globally are exposed to diverse and often interacting
physico-chemical and biological disturbances [1,2]. The diversity,
spatio-temporal heterogeneity, and interactions of these disturbanc-
es have complicated the understanding of the response of coral
assemblages to multiple stressors [1], and reduced the potential for
spatially targeted coral reef management strategies. To counteract
species extinctions predicted by many [e.g. 3,4,5], corals would have
to adapt to temperatures of more than 2°C above normal thresholds
by the turn of the century [6,7], in addition to coping with a suite of
other stressors [8]. For example, local stressors such as eutrophi-
cation from coastal watersheds exacerbate coral stress by changing
the oligotrophic conditions where coral reefs function optimally
[9,10,11,12], while overfishing and removal of grazers is acceler-
ating a shift towards algal dominance [9,13,14].

Given the bleak view of the status and prognosis for coral reefs
globally, timely identification of spatial gradients of their exposure
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strategies proposed include among others: (i) protecting coral reef
locations with biological and environmental conditions that render
them less exposed or vulnerable to stress [15,16,17,18]; and (ii)
reducing anthropogenic disturbances such as overfishing and
pollution, which are likely to reduce the resistance and tolerance of
corals to radiation (temperature and ultraviolet light) stress
[19,20,18]. Understanding of where, when and how global and
local stressors affect corals can strengthen the decision support
needed for appropriate coral reef management [7,21,22,23,24].
The two important considerations that have arisen from these
multidisciplinary studies are: (i) assessment of the degree of
exposure to multiple interacting stressors at different scales; and (ii)
understanding how the environment interacts with the coral
community structure and coral-algal symbiosis in influencing their
sensitivity, vulnerability and adaptability to thermal, radiation and
other physiological and biomechanical disturbances. The first of
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these two metrics are evaluated here as one of the important
considerations that underpins the concepts of the resilience and
vulnerability of coral reefs more generally [25].

Ecosystem vulnerability, although defined in different ways, is
most often conceptualized as a function of the exposure, sensitivity
and adaptive capacity of the perturbed organisms or ecosystems
[26]. Sensitivity is a property of a system that is difficult to estimate
and is dependent on the interaction between the biological and
ecological characteristics of a system as well as on the attributes of
the environmental stimulus [27]. Unlike sensitivity and adaptive
capacity, exposure is an attribute of the relationship between the
system and perturbations, rather than of the system itself [26].
These three metrics of vulnerability overlap and the environmen-
tal and biological processes that drive them are frequently
interdependent [27]. For instance, many of the determinants of
coral sensitivity (e.g. acclimatization) are similar to those that
influence or constrain a system’s adaptive capacity (e.g. genetic
and species diversity, dispersal, and connectivity).

In this study, we derive a generic exposure metric and translate
it into fuzzy logic mathematical expressions. The modelling of
coral exposure, like many reef processes, is often hindered by poor
knowledge of the physiology of corals complicated by contradict-
ing theories on coral-environment interactions [18], sparse data,
and poor precision [28]. Frequently, important observations are
lacking and potentially valuable information may be non
quantitative [29], which may limit the usefulness of these models.
For example, the ability of corals to adapt or acclimatize to
abnormal conditions is not well understood [30]. Fuzzy logic, first
introduced by Zadeh [31], offers a methodology for dealing with
these problems and provides an alternative approach to modelling
complex systems. For example, translating data layers to fuzzy
measures results in standardised measures of the possibility of
belonging to a given set along a continuous scale from 0 to 1 [32].
This approach is more realistic than a binary set membership rule
as is used in Boolean analyses, especially when there is uncertainty
inherent in the input data [29].

Stressor interactions, coral response and environmental
thresholds

In benthic aquatic habitats, the light and temperature
environment is highly dynamic and is primarily a function of
hydrodynamics (tidal regime, currents, and stratification), cloud
cover, and turbidity among other factors [33,34,35]. For instance,
extreme tides in turbid waters causes a much greater increase in
benthic irradiance than in clear water [34,36], which has been
shown to cause significant coral mortality [34,37,38,39]. More-
over, as wind speed falls, vertical-mixing decreases, resulting in
decreased evaporative cooling and transfer of deeper cool water,
which increases the likelihood of thermal stress on corals [6,33,40].
Based on published hypotheses and conceptual deductions about
the likely response of corals to a given stressor (Appendix S1), we
use a systems analytical approach to idealize the coral-environ-
ment relationships. We considered a series of composite stressors
derived from combinations of sea surface temperature (SST), UV
irradiance, wind speed, tidal range, and chlorophyll a concentra-
tion data. SST, UV, wind magnitude and consistency (together
referred here as radiation) are considered to be the primary
climatic drivers of coral reef exposure. Tides and SST variability
are considered to be stress antagonistic or reducing variables that
mitigate the primary climatic stressors. Sedimentation and
cutrophication are stress reinforcing or exacerbating interactive
stressors because they can undermine the resilience of the coral
reef ecosystem through either undermining physiological homeo-
stasis or the recovery processes after disturbance [12,41]. Coral
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exposure 1s a function of derived stressors that interact with
radiation having either reinforcing (additive or multiplicative) or
reducing affects (antagonistic) [2,42,43]. It is this combination of
reinforcing and reducing effects that causes the complex and
sometimes surprising behavior of composite coral-environmental
systems that is not well predicted by simple models that consider
one or few coral-environmental variables [44].

Most methods for estimating thresholds of environmental
attributes, such as thermal and sediment levels, above which
stress responses such as coral bleaching, diseases and mortality are
likely to occur [6,45,46] mostly rely on availability of response
observations (e.g., [47]). There are limited insights for identifying
when thresholds may be crossed, in a setting with interactive, and
cumulative impacts of multiple stressors, which often result in
spurious and confounding effects [2,24]. In addition, a system’s
response to stressors can adopt various linear and non-linear
complex behaviour patterns, which for modelling purposes can be
represented in many forms of fuzzy logic membership functions
including trapezoidal, sinusoidal, logistic, Gaussian etc [2,48]. In
this study, we estimate environmental limits of corals (x, and x,)
based on the distribution of global environmental data for
locations where corals are found. We assume that geophysical
variables in coral reef areas are distributed normally, where x, and
x, are two standard deviations from the mean on the lower and
upper tail. For simplicity, we assign a normal cumulative function
(represented as logistic curve in fuzzy logic membership function)
as the response of the interaction between coral and environment,
where coral exposure is a function of the environmental variables
considered, and initially increases or decreases exponentially along
the environmental gradient respectively above or below the user
defined minimum threshold (x,), before levelling off at a user
defined maximum threshold (x;) [2] (Fig. 1).

Because coral bleaching and mortality is driven by factors such
as temperature and their interactions with other stressors like
pollution and sedimentation, it may be possible to prevent some
damage by reducing the impact of stressors that are not related to
climate change [18,19]. Additionally, fishing can influence grazers
and algae and subsequently influence the overall recovery rates
and resilience to climate disturbances [9]. This study aims to
identify the global spatial gradients of thermal and eutrophication
stressors and of the key factors that reduce these stressors to
develop a broad-scale metric of environmental exposure for coral
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Figure 1. Increasing (S curve) and decreasing (Z curve)
sigmoidal membership functions, which were used to stan-
dardize the environmental data. x, and x, are the control points for
the lower and upper bounds along the stressor gradient; SD is the
standard deviation, while X is the mean.
doi:10.1371/journal.pone.0023064.g001
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reefs. In addition, we address the questions: (i) which of these
stressors are corals most exposed to in their respective locations, (ii)
which reef locations are least and most exposed to thermal and
UV radiation and sedimentation stress, and (ii1) how do these stress
and reinforcing and reducing variables interact globally?

Materials and Methods

We used environmental data from satellite observations and
model outputs to derive variables that represent temperature and
UV light (radiation), reinforcing and reducing stress.

Sea surface temperature

Sea surface temperature derived variables were obtained from
the second version of the coral reef temperature anomaly database
(CoRTAD) [23]. This database contains global SST and related
thermal stress metrics at an approximately 4-km resolution weekly
from 1982 through 2008, derived from measurements from the
Advanced Very High Resolution Radiometer onboard NOAA
suite of polar orbiting satellites. The global accuracy of the
retrieval algorithm based on comparisons with in situ buoys
indicates values of 0.02-0.5°C [49]. When compared with in situ
temperature from data loggers at shallow depth in the western
Indian Ocean, RMSE of 0.87°C were reported [16]. The
CoRTAD reanalysis database has also been evaluated using
situ observations from different coral reef locations globally and at
depths ranging from 0-9 m, which corresponds to depths of most
coral reef habitats [23]. This evaluation reported RMSEs ranging
from 0.49-0.81°C, and a coefficient of determination (R?) of 0.72—
0.96 [23]. Overall, the performance of this data for global coastal
applications is adequate, notwithstanding the fact that radiometers
measure the temperature at the sea surface while most i situ
measurements are based on bulk temperature at shallow depths.

We downloaded time series of weekly SST anomalies
(WSSTAs), defined as the weekly averaged temperature in excess
of 1°C or more above that week’s long term average value; and
thermal stress anomalies (T'SAs), defined as the temperature excess
of 1°C or more above the climatologically (long-term average)
warmest week of the year (the warmest week of the 52
climatologically weeks averaged over 27 years) [23], from the
National Oceanographic Data Center website (http://www.nodc.
noaa.gov/sog/Cortad). Two different cumulative estimates of
thermal stress were computed from each of these metrics: TSAs
and WSSTAs were summed for each year and averaged over 27
years; and for each year, a maximum duration (in weeks) that
WSSTA and TSA were greater than or equal to 1°C were
computed and averaged over 27 years. These two metrics, the
mean annual cumulative and mean yearly maximum duration,
represent the characteristic magnitude and duration of the
anomalies at a given location, which are important predictors of
coral stress [23,45]. Mean SST and the coefficient of variation for
the 27-year monthly mean time series were also computed.

Chlorophyll and suspended solids

Oceanic satellite observations in the visible and near-infrared
bands allow for the measurement of a variety of ocean color
information including phytoplankton chlorophyll-a, total suspend-
ed matter (I'SM), and colored dissolved organic matter (CDOM)
[50,51]. For modeling purposes, ocean waters are commonly
described as being of Case I or case II types [52,53]. The former
type are those waters whose optical properties are determined
primarily by phytoplankton and related colored dissolved organic
matter (CDOM) and detritus degradation products; while the later
represents the turbid coastal zones influenced by land drainage or
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sediment re-suspension, with optical properties mainly influenced
by CDOM of terrestrial origin, mineral particles, various
suspended sediments, urban discharges and industrial wastes [52].

The application of ocean color data in coral reef areas is limited
by the complexity of the water’s optical properties in shallow
coastal environments where they are found. The standard Case I
algorithm for deriving chlorophyll concentration fail in turbid
coastal waters resulting in over estimation of chlorophyll along
most coastal areas [53], even if due to terrestrial influence
considerable enhancements of the algal biomass in these shallow
zones is expected. Further, the standard algorithms for both water
types were developed on the assumption of optically deep waters.
Therefore in clear shallow bottoms that are highly complex or
reflective as with the case in coral reefs and atolls, bottom
reflection can induce an increase in marine reflectance, which is
wrongly interpreted as ocean color constituents [54]. Given these
problems, until special algorithms that take into account the
complexity in coral reef areas are developed and incorporated in
the standard processing chains of the current ocean color satellites,
the usefulness of ocean color data for coral reef applications will
remain limited [54,55].

To derive chlorophyll estimates taking into account these
problems we carried out a series of analyses with ocean color
observations from the Sea-viewing Wide Field-of-view Sensor
(SeaWiFS), Moderate Resolution Imaging Spectro-radiometer
(MODIS), and Medium Resolution Imaging Spectrometer
Instrument (MERIS) sensors (Appendix S2). The GlobColour
processor at the European Space Agency’s GlobColour project
(http://hermes.acri.fr/GlobColour) was used to process Level 2
data from the three sensors to derive monthly level-3 binned
products, including case I and case II chlorophyll concentrations
with their respective flags, at a resolution 4.63 km at the equator
(http://www.GlobColour.info/products_description.html). Data
from all the three sensors were merged to derive case I
Chlorophyll, while MERIS Case II algorithm was used to retrieve
case II chlorophyll [56]. These Level 3 outputs do not spatially
differentiate the regions where each of the water types are
relevant; therefore further analysis using turbidity flags is required
to discern and merge regions with the different water types into a
homogenous continuous layer [53]. To achieve this, we used
turbidity and depth flags (<30 m) derived from the processing of
level 2 products, in a logical expression designed to merge
respective case I and case II regions in a given month, and further
to exclude shallow water (<30 m) pixels. Having masked
shallower depths using the depth flags, we assumed similar water
column properties in masked areas to those found in adjacent
deeper (>30 m) water pixels, and extrapolated the deeper water
pixels to these areas. To achieve this for each layer, we applied
3x3 spatial interpolator, which calculates the median value of 8
pixels adjacent to the pixel being considered. In effect, pixels
adjacent to the missing value maintained their original values
while the missing pixel was assigned the resulting value from the
mterpolator [16]. These monthly mean layers were then
temporally aggregated for the long-term average.

Doldrums

Global sea surface wind speed (m s~ ') estimates for 10 m above
sea level at a 28-km resolution are available from the National
Climatic Data Center (NCDC, fip://eclipse.ncdc.noaa.gov/
raidlb/seawinds). NCDC wind data is based on the blended
observations from multiple sensors, with reduced spatial and
temporal gaps of individual satellite samplings, and reduced sub-
sampling aliases and random errors [57]. Despite the coastal
application of this data by the Coral Reef Watch, inter-
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comparisons with other products have not been performed
because sparse in-situ measurements over the vast ocean surface
make errors difficult to quantify [57]. Nonetheless, measurements
from each sensor are passed through quality control prior to
blending and gridding. Additionally, the blending of cross-
calibrated multiple satellite observations is known to increase
accuracy and resolution [57,58].

Daily averaged wind speeds (2000-2009) and the averaged 10-year
mean monthly wind speeds (1995-2004) were downloaded. The
National Oceanic and Atmospheric Administration (NOAA) coral
reef watch defines doldrums as wind conditions with a daily mean of
less than 3 m s~ '. To estimate the magnitude and consistency of
wind regimes in a given location, a doldrums metric was computed by
taking the annual average maximum number of days that wind
speeds were greater than 3 m s~ ' over 10 years (2000-2009) and
multiplying this by the 10-year mean monthly average.

Tidal model

Over the last decade, the tidal research group of Le Provost and
collaborators have produced a series of finite element solution
(FES) tidal atlases; FES-2004 is the latest release. Data are
computed from the tidal hydrodynamic equations and tide gauges
and altimeter data assimilation [59]. When cross-validated with
other tidal products, the FES-2004 atlas was found to be the most
accurate, with improved performance in shelf and coastal areas
and moderately deeper areas [59,60]. The accuracy of the 15 tidal
components used in the model ranges from 2-12 cm and varies by
region [60]. Therefore, local applications would require calibra-
tion with tidal observations at the same scale.

The digital FEES-2004 tidal model and the associated extraction
software were downloaded from the Laboratoire d’Etudes en
Géophysique et Océanographie Spatiales website (http://www.
legos.obs-mip.fr/en/soa) [59,60]. The software in C++ was
modified to enable gridding of the tidal predictions for a user
defined spatial and temporal extents. To minimize the computer
processing time, the model’s temporal resolution was degraded
from hourly to 6-hr interval. These predictions were then
aggregated for average, minimum, and maximum heights over
seven day intervals and gridded at the model’s spatial resolution of
roughly 14-km. To capture the long-term conditions and
variability, the model was run for 8 years from 1987 with a
three-year interval, including 1987, 1990, 1993, 1996, 1999, 2002,
2005, and 2008. Tidal ranges were computed as the long term
averaged difference between the weekly maximum and minimum
simulated tidal heights.

Ultraviolet radiation

Daily global maps of UV-erythemal (biologically damaging)
irradiance at the Earth’s surface (for the spectral range 290 to
400 nm and in the units of milli-watts m-?) in a 1 by 1.25 degree grid
were retrieved for 1996 to 2001 from the NASA website (http://
toms.gsfc.nasa.gov) [61,62]. This data is derived from the total
ozone mapping spectrometer (TOMS) on-board Earth Probe-
TOMS satellite. Erythemal radiation is a weighted average of UVA
(315-400 nm) and UVB (280 to 315 nm) used as a measure of skin
irritation caused by exposure sunlight [63]. Errors associated with
this data have not been ascertained for many parts of the world,
however evaluations in Canada using a ground-based spectrometer
reported absolute accuracy of 6% under normal conditions and
12% under conditions of UV absorbing aerosol plumes [61]. These
uncertainties are mostly influenced by the amount of ozone, clouds
and aerosols, and terrain height. In the ocean, depth attenuation
and the optical properties of the seawater influence the amount of
radiation below water surface [61,64]. Radiative transfer modeling
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that includes the ocean system has been performed to estimate in-
water radiation field [60,65]. Here we use Erythermal UV with no
correction for the seawater optical properties. Previous reports have
shown a good correlation of this data with coral bleaching where
observations were made at varying depth [16].

The current online values of UV irradiance and Erythemal
exposure from EP-TOMS have errors after 2001, and therefore
can not be used for UV changes as these are more prone to time-
dependent errors from cloud cover and aerosols. The application
of this data here is limited to global mean, where the overall error
is expected to be relatively small, as the mainly negative cloud-
height errors and other positive errors usually partly cancel,
leading to an overall smaller error [66]. Consequently, UV
average from 1997 to the end of 2001 was computed to represent
local conditions in each grid square.

Coral exposure

Environmental variables were grouped into three categories
based on the role that they play as coral stressors: (1) radiation
variables, consisting of variables derived from temperature (mean
SST, TSA and WSSTA magnitude and duration), UV-erythermal
and wind speed data (doldrums index); (2) stress reinforcing
variable (T'SM and chlorophyll-a), representing sedimentation and
eutrophication; and (3) stress reducing variables, consisting of SST
variability and tidal range. Values of each variable that correspond
with the approximately 4000 reef locations were extracted, and
examined for normality and logl0-transformations applied where
necessary (Appendix S3). For each variable, a membership
function with similar behavior pattern to a normal cumulative
distribution function was used to characterize the relationship
between coral exposure and a stress variable. Membership
functions capture the degree to which the variable x is a member
of a fuzzy set A using a suitably chosen function u(x) [48]. Here we
used spline-based logistic functions:

0,x<x,
(x—xa>2 Xa+Xp
2 , Xg <
Xp— Xq 2
pu(x)= 5
172()(—)6})> ’megxb
Xp—Xg 2
1,x>xp
(1)
0,x<x,
2
Z(x xa> ’xagxsxﬁ—xh
Xp—Xg4 2
pu(x)= 5
X—Xp Xq+ Xp
1-2 Xp
Xp— Xg4 2
1,x>xp
I,x<x,
2
172<x xh) ,xa£x£xa+xb
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(b—xa) 2
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where x, and x; are control values and correspond to the lower and
upper bound of a stressor values, respectively (Table 1). These
were calculated for each variable as the mean value of minus or
plus two standard deviations, respectively. Radiation and rein-
forcing variables were normalized using an increasing curve (Eq. 1)
and stress reducing variables were normalized using a decreasing
curve (Eq. 2) (Fig. 1).

Spatial Principal Component Analyses (SPCA) was used to
combine the standardized variables within each category.
Principal Component Analysis transforms each variable into a
linear combination of orthogonal common components (output
layers), or latent variables with decreasing variation. The linear
transformation assumes the components will explain all of the
variance in each variable. Hence, for each output the latent
component layer carries different information, which is uncorre-
lated with other components. This enables a reduction of output
maps because the last transformed map(s) may be discarded as
they have little or no variation left and may be virtually constant.
The component weightings were calculated using coefficients of
linear correlation to weigh the contribution of factors in spatial
principal component analysis [67]. SPCA was performed to
synthesize the standardized variables within radiation, stress
reducing, and stress reinforcing categories. A final composite
map from each of these three groups was computed by summing
PC’s with contribution ratio >1, weighted by their respective
contribution ratio (Equation 3; [68,16]).

E:%171+0€2V2~~+“m"/m (3)

where 7; is the i principal component, while o; is its corres-
ponding contribution ratio.

The output maps were standardized between zero and one,
representing low and high exposure respectively. To combine the
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stress reducing and radiation variables, SPCA procedure described
above was repeated with standardized radiation and reducing
variables as the input variables. The output PC’s were synthesized
using a weighted sum equation (Eq. 3) to yield a layer with
estimates of exposure to radiation taking into account the
contribution from reducing variables. Fuzzy-integration-based
approach was used to integrate the output from this procedure
with the reinforcing variables into a single composite layer. [69]
lists five fuzzy operators that are most useful for combining fuzzy
data (AND, OR, sum, product and gamma). Given two fuzzy sets
(standardized layers) 4 and B, the fuzzy sum operator produces a
layer whose values are equal to or greater than each of the input
layers 4 and B and results in an increased effect [69]. We therefore
used fuzzy sum operator to reflect the reinforcing behaviour of
sediment and eutrophication to radiation stress:

p(x)=1—1II7_; 1 —p; 4)

where p; .is the membership value for th map, and :=4, B, n
maps.

Coral reef location data was obtained from the Reef Base
website (http://reefgis.reefbase.org/) and the Wildlife Conserva-
tion Society monitoring sites in the western Indian Ocean [70].
The location data were grouped into eleven oceanic provinces [9]
(Fig. 2). For the respective locations, exposure metrics as described
above were extracted for the corresponding locations. Box plots of
exposure metrics by stressors against the coral reef provinces were
plotted.

Exposure gradation

Exposure gradation, also termed “‘defuzzification,” is a process
where fuzzy application outputs are converted into a crisp output
to facilitate their interpretation [48]. We used an iso-cluster
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Table 1. Summary statistics for the variables used in the analyses based on (a) coral reef location points, and (b) all pixels within
the image spatial boundaries (35N&S, 180E&W); (c) is control values x, & x, used in standardizing the variable layers.
Radiation Reducing Reinforcing
Mean Mean Mean Mean SST
Mean sum sum SSTA TSA Doldrum Tidal coeff.
SST SSTA TSA duration duration UV index range of var.  Chlorophyll TSM
(a) Coral reef areas
N 3822 3901 3901 3901 3901 3958 3963 3914 3822 3274 3325
Average 26.9 16.0 3.9 20 0.8 250.0 20.1 0.7 5.6 0.7 0.8
Std dev 1.3 1.2 1.4 1.4 1.6 229 1.5 23 1.6 1.2 1.5
Min 20.8 11.0 1.0 0.7 0.1 136.6 1.0 0.1 1.5 0.0 0.1
Max 29.6 52.0 243 10.6 57 3224 111.5 33 21.9 13.8 449
(b) Global values
Average 221 21.0 13.9 57 4.0 2443 215 0.7 209 0.2 0.8
Std dev 44 1.5 26 26 2.6 45.6 1.7 22 22 0.6 0.8
Min 14.5 0.9 0.0 0.0 0.0 124.5 0.0 0.0 13 0.0 0.1
Max 29.7 90.3 84.7 16.5 129 419.6 134.8 4.9 51.8 27.2 45.2
(c) Control values
Xa 243 10.8 1.9 1.0 0.3 204.2 9.0 0.1 22 0.1 0.2
Xb 29.6 237 8.2 4.1 2.1 295.8 45.1 3.6 14.4 24 2.0
Mean SST and UV were not log transformed.
doi:10.1371/journal.pone.0023064.t001

August 2011 | Volume 6 | Issue 8 | e23064



Exposure of Corals to Multiple Disturbances

Figure 2. Coral reef locations grouped into eleven oceanic provinces after Donner (2009). Coral reef locations were obtained from
Reefbase (http://reefgis.reefbase.org/), WCS coral monitoring sites in the western Indian Ocean, and from Ateweberhan & McClanahan (2010).

doi:10.1371/journal.pone.0023064.g002

(clustering) approach to partition exposure membership grades
map into 4 user-defined clusters of statistically homogenous classes
(i.e. low, moderate, high and severe).

Data for the three stress categories and for the final model were
extracted for the sample reef locations. Correspondence analyses
[71] were performed to detect the structural relationships among
the oceanic provinces based on the three stress groups and on the
exposure classes. The results of correspondence analysis were
presented on a bi-plot that represents the configurations of points
in projection planes formed by the first two principal axes [71]. To
determine the distribution of sampled locations by region on the
basis of their respective partial exposure scores, exposure space bi-
plots of reinforcing against radiation and reducing stresses were
generated. Contours were also drawn on these exposure space bi-
plots based on the break points of final model exposure classes.

Results

Global patterns

Analyses of the partial and overall exposure from the three stress
groups indicate that corals at locations in all the 12 oceanic provinces
were evaluated as highly exposed to radiation and reinforcing stress,
albeit with spatial variability within the regions (Figs. 3, 4, 5).
Ordination of the oceanic provinces by their respective exposure
scores in each of the three stress groups in a correspondence analyses
showed that 90% of the variation was captured by the first principal
axis (cl) (Fig. 3a). The marginal variances explained by the stress
categories and their relative position on the correspondence bi-plot
indicates that reinforcing variables were most influential (negative in
cl), and in descending order radiation and reducing (lack of);
radiation stress was neutral among all regions; and the reducing
stress had the lowest influence on the first axis (Fig. 3a).
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When the regions were grouped based on their assigned
exposure grades (Fig. 3b), a pattern emerged where regions
clustered around two exposure extremes as follows: South East
Asia, Eastern Pacific, Micronesia, and the central Indian ocean
grouped on the severe exposure extreme, primarily due to low
reducing (high reducing scores) and high radiation stress scores
(Fig. 3a, b), the Middle East and Western Australia were also in
this group primarily due to high scores from reinforcing stress
(Fig. 3a). The second cluster of regions strongly associated with
moderate-high exposure included the Caribbean, Great Barrier
Reef (GBR), Central Pacific, Polynesia and the western Indian
Ocean, all with moderate-high scores from radiation and GBR
strongly associated with reinforcing stress; while the Brazilian
province with low exposure did not conform well to any of these
groups (Table 2, Fig. 3a, b). Partial exposure scores from the three
stress groups indicate that the Caribbean, GBR, South East Asia,
and the western Indian Ocean were highly variable as depicted by
the outliers in the lower and higher extremes of the whiskers (Fig. 4)
and by the distribution of sample points in the exposure space bi-
plots (Fig. 6b, f, j, I).

The GBR, Middle East and Western Australia were, in relative
terms, exposed to high stress reducing effect (thus low exposure
scores) from tidal movement and high temperature variability,
while the central Indian Ocean, Central and Eastern Pacific,
Polynesia, and South East Asia were relatively exposed to low
reducing effect as shown by the high partial exposure scores
attributed to low stress reducing conditions (Fig. 4b). Western
Indian Ocean and the Caribbean reefs were moderately exposed
to reducing conditions with the later province being highly
variable (Table 2, Fig. 3a; Fig. 4). In the Middle East, high
reinforcing stress was mainly in the Persian Gulf (Bahrain and
Iran) and the Gulf of Oman, Southern Red Sea and Gulf of Aden,
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and Southern Asia on the Gulf of Kutch on the Northerly Gujarat
coast among other locations.

Regional patterns

The Central Pacific, Micronesia and Polynesia oceanic
provinces were weakly exposed to reinforcing variables, and the
overall exposure was largely due to high exposure to radiation
stress (top and bottom right distribution of sample points in the
exposure space bi-plots of Fig. 6 d,g,i). These regions were also
exposed to relatively low stress-reducing effects alongside the
central Indian Ocean and a more variable eastern pacific (Figs. 4,
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5, 6). In South East Asia, all locations with low to moderate overall
exposure grades (on the bottom left of the exposure space bi-plots)
were in the Far East in the coral reefs of Japan, while the rest of the
region was mostly high to severely exposed primarily from
radiation stress and a low stress reducing effect (Fig. 6-j). The
reinforcing effect was generally low to moderate, but some
locations were highly exposed to reinforcing effect including
Kagoshima Bay and Western Shikoku in Japan, Polillo Islands and
Bolinao in the Philippines, Pari Island, East Kalimantan, and
Tanjong Berakit in Indonesia, and several locations in Thailand,
Cambodia and Malaysia (Fig. 7, See Appendix S4). Reefs in South
East Asia, including the Islands of Peghu, and Peru in Taiwan and
Indonesia respectively, Honcau and Holong Bay in Vietnam, and
Shikoku in Japan are overall severely exposed, although they have
low to moderate exposure to radiation they have high to severe
exposure to reinforcing stress (Table 2, Fig. 7, and See Appendix
S4).

Western Australia is exposed to severe conditions due to
reinforcing stress. Despite the high exposure to doldrums, the tidal
variability was high and likely to mitigate radiation stress, for
example in Tantabiddi, mangrove islands, and Onslow reef, all
had low to moderate radiation stress. Ningaloo and Abrolhos
Islands have low radiation but were severely exposed to
reinforcing stress alongside Dampier Archipelago, and in the
South of Conzine and Withnell Bays. The reefs in the offshore
islands off NW Australia in Seringapatam Reef, Hibernia, Timor
Sea Reefs, Scott Reef, and Rowley Shoals were not exposed to
high reinforcing stress, but were highly exposed to radiation stress
due to high doldrums and low tide variability.

The Central Indian Ocean had many reefs with high exposure
primarily due to radiation stress (Fig. 6¢). These reefs are generally
exposed to relatively low reinforcing stress, with the exception of
reefs in Sri Lanka and India (Fig. 6¢c, Fig. 7). The GBR was
moderately exposed to radiation and highly exposed to reinforcing
stress, and to relatively high stress reducing effects of winds and
tides. However, reefs in Kimbe Bay in Papua New Guinea and
Solomon Islands in South-west Pacific were highly exposed to
radiation stress.

The western Indian Ocean reefs were mostly ranked high to
severe in overall exposure, except for some reefs mainly in South
Africa, Mauritius, Reunion, Rodrigues, and Torres Reef in
Mozambique, which were least exposed (Fig. 6-1, see Appendix
S4). Although highly variable, the main stress contributor in this
region was radiation and reinforcing stress. In most coral reef
locations where exposure grade was severe, radiation and
reinforcing stress were both high (Fig. 6-1). These reefs included
Malindi and Kiunga in Kenya, reefs in southern Tanzania, most
of western Madagascar, and Berreira and Vamizi reefs in
Mozambique among others. Reefs at Grand River South East in
Mauritius, Lagoa Pinnacle and Coral Gardens in Mozambique
had low exposure to radiation stress but were severely exposed to
reinforcing stress (Fig. 6-1, See Appendix S4).

In the Eastern Pacific, reef locations in the south were mostly
severely exposed to radiation stress and included Inguana, Saboga,
Uraba, Taboga, Contadora Islands, and the Gulf of Chiriqui in
Panama, several reefs in Gorgona Island in Colombia, Culera Bay
in Costa Rica, and the Galapagos Archipelago in Ecuador (Fig. 6-
e, 7, and See Appendix S4). The northern part of the Eastern
Pacific, including along the Gulf of California, had high reducing
and reinforcing effects.

Overall the Caribbean region was moderate to highly exposed
but also with high spatial heterogeneity in the exposure variables
(Figs. 4, 5, 6, 7). The overall exposure of Caribbean reefs to
radiation stress was moderate but several locations were outliers
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and highly exposed to radiation stress. Reef locations in high and
severe exposure grades, with reinforcing as the major stress
contributors, included reef locations in eastern Panama, Belize, the
Bahamas, Cuba, eastern Mexico, and the Florida Keys (Fig. 7; See
Appendix S4).

Discussion

Coral reefs globally are highly dependent on radiation, but are
also exposed to radiation stress when values exceed normal
seasonal and inter-annual ranges [72]. Stress, as used here, is the
environmental exposure and does not distinguish the physiological
acclimatization or genetic adaptation that determines the corals
and other organisms’ sensitivity to these forces. The degree of
sensitivity will determine how organisms counter these stresses and
therefore our metric is only a comparative baseline of the forces
that are exogenous to the reef organisms. This exposure measure
alone will not have predictive power in determining responses to
the environment, which requires the sensitivity and adaptive
capacity of the organisms, but does provide a basis for
understanding the forces that these organisms face.

The results suggest considerable spatial heterogeneity globally
but also some clear groupings based on our metrics of radiation
stress and reinforcing and reducing variables. The spatial
heterogeneity of coral stressors and their influence on coral
physiology provide a basis to tailor management strategies that can
address locally relevant threats [20,73]. Determining the specific
spatial locations with lower or higher cumulative stress and with
significant non-climate change related stressors can assist this
prioritization process. Despite the difficulties of discriminating
among stressors [74], the results of this study demonstrate the
utility of disaggregating stress into various components to
emphasize management strategies and to effectively reduce the
degradation of coral reefs [75]. The implications of this variability
are discussed below in terms of the classification of reefs based on
these variables and potential management recommendations.

There is increasing concern globally that enhanced runoff from
human land uses is leading to the degradation of coral reefs [41]. It
has been argued from studies on the inshore reefs of GBR that
poor water quality lowers the radiation tolerance of scleractinian
corals [12]. It has also been shown that the bioerosion, growth,
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Table 2. Regional statistics for all three-stress groups, for radiation and reducing composite, and for the stress model.
Ocean province Radiation Reducing Reinforcing Radiation & Reducing Stress model

N Mean SE Mean SE Mean SE Mean SE Mean SE
Western Indian Ocean 407 0.5 0.0 0.5 0.0 0.4 0.0 0.5 0.0 0.7 0.0
Western Australia 26 0.7 0.0 0.4 0.0 0.6 0.1 0.7 0.0 0.9 0.0
South East Asia 412 0.7 0.0 0.8 0.0 0.4 0.0 0.7 0.0 0.8 0.0
Polynesia 123 0.5 0.0 0.8 0.0 0.3 0.0 0.6 0.0 0.7 0.0
Middle East 96 0.7 0.0 0.2 0.0 0.7 0.0 0.6 0.0 0.9 0.0
Micronesia 62 0.7 0.0 0.8 0.0 0.4 0.0 0.8 0.0 0.8 0.0
Great Barrier Reef 1530 0.5 0.0 03 0.0 0.5 0.0 0.4 0.0 0.7 0.0
Eastern Pacific 103 0.7 0.0 0.5 0.0 0.7 0.0 0.7 0.0 0.9 0.0
Central Pacific 17 0.5 0.1 0.7 0.1 0.3 0.0 0.5 0.1 0.6 0.1
Central Indian Ocean 169 0.5 0.0 0.9 0.0 0.5 0.0 0.7 0.0 0.8 0.0
Caribbean 1035 0.4 0.0 0.6 0.0 0.4 0.0 0.4 0.0 0.7 0.0
Brazilian province 18 0.1 0.0 0.6 0.0 0.6 0.0 0.3 0.0 0.7 0.0
doi:10.1371/journal.pone.0023064.t002

and recovery rates of coral reefs are often slowed by high nutrient
concentrations [41,76]. Low water quality can reduce the stress of
light and its interaction with temperature to increase bleaching
response [72,77]. However, corals stressed by sedimentation and
cutrophication may have a lower capacity to tolerate the effects of
other stressors and recover slower, making these factors as overall
reinforcing variables [41,78]. Consequently, if these studies are
relevant globally, sedimentation and eutrophication reinforce coral
reef stress and improved water quality will increase regional-scale
resilience to global climate change.

Our results indicate that sedimentation and eutrophication
(reinforcing stresses) are common in all regions, but differ in their
intensity and co-occurrence with radiation and reducing stressors.

In the western Indian Ocean, coral locations exposed to high
reinforcing stress correspond to those areas with high river runoff
and sedimentation [79-82] (Fig. 6-1, See Appendix S4). These
locations are exposed to moderate radiation stress but overall are
severely exposed to high reinforcing effect of water quality from
highland runoff. Local management of the coastal watershed in
these areas is expected to shift the overall exposure towards lower
severity grades. On the GBR, eutrophication is increasing
principally due to land use in the adjacent coastal catchment area
[83-86]. From our 1520 sample points in GBR, there is great
variability but the majority of coral locations are moderately to
highly exposed to water quality reinforcing stress (Fig. 4, 7). Given
that the exposure of GBR reefs to radiation stresses are relatively
moderate ((Fig. 6-f), a management strategy that improves water
quality is predicted to increase reef resiliency [13,78].

The central Indian Ocean lies within a different domain of
exposure, where corals are exposed to high radiation stress but
have little reinforcing stress, except in Sri Lanka and off India.
Despite most of this region having small direct human impacts,
synergistic effect of increased temperature and UV is the dominant
stressor and has led to current significant coral declines associated
with climatic anomalies [87]. In the most remote areas of the
Chagos Islands, there is also evidence for fast reef recovery after
these disturbances, which may arise from the low reinforcing
stresses [7,88]. Our results indicate that this region has low stress
reducing effect from temperature variability and tidal amplitude,
making it one of the most exposed to climate change alongside
Micronesia and South East Asia.
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In the Middle East, there was moderate to high radiation stress,
with recent reports indicating exposure to high thermal anomalies
[23] and similar conditions for the future [7]. Corals in the Middle
East are also exposed to high levels of natural eutrophication,
along with Western Australia, Eastern Pacific, and the GBR.
Despite their exposure to extreme environments that are close to
the limits of their thermal distribution [19], less frequent bleaching
disturbances have been predicted in the future [7]. As a result,
managing the highly eutrophic conditions and the chronic human
impacts in these regions could possibly reduce coral decline.

In the Caribbean, coastal development—among other distur-
bances such as diseases and bleaching—has been associated with
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mortality of corals and the increase in macroalgae [74,89]. Our
study shows that coral reefs in the south western and the western
boundary of the Caribbean, including Belize, reefs off Panama,
Costa Rica, Colombia and Venezuela, are severely exposed to
stresses, primarily due to reinforcing stress and moderate radiation
stress and compounded by a low reducing effect. In Belize for
example, there has been reports of high coral decline due to
nutrification, bleaching, and diseases among other factors [74,90],
In agreement to our results indicating a high-severe exposure
primarily due to reinforcing and radiation stresses (Fig. 2, See
Appendix S4). Declines continue despite the integrated adaptive
approach to marine protected area management currently in place
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since the late 1990’s. This scenario provides an example of the
difficulties of managing for both large-scale climate disturbances
and the regulation of land-based sources of pollution and siltation
in areas where the main sources of pollution are far away from the
reefs [91,92].

While these results are largely expected to correspond to the
observed degree or extent to which coral reefs are subject to the
perturbations, including the proximity to river discharges, coastal
cities and agricultural areas, they may not necessarily correlate
with the current reef status and observed changes in the
respective regions or specific coral reef locations. Internal
elements of biological and ecological adaptive capacity (i.c.
genetic and species diversity, dispersal and connectivity) and
sensitivity (e.g. acclimatization, overall health) that are critical to
such predictions are not considered here and may explain
mismatches between exposure and vulnerability. Recent model
predictions are indicating that adaptations of corals through
physiological and genetic changes of corals and zooxanthellae will
not match the rate of temperature increase from climate change
under the business-as-usual scenarios [30]. Environmental factors
that counter the effects of radiation stressors or reduction of the
reinforcing stress factors may play a greater role in the
maintenance of the health of coral reefs.

Management implications

The global variability in coral exposure to stresses, as evidenced
by the distribution of coral locations by region in the exposure
space (Fig. 6) portrays the degree to which various management
strategies are locally relevant. For example, the variability of
exposure among coral reef locations in the Caribbean, GBR,
South East Asia, and western Indian Ocean indicate the potential
for a high within-region dynamics (Fig. 6). This offers an
opportunity for spatially targeted management strategies to
possibly reverse the well-documented significant decline of coral
reefs in these regions (e.g. [45]). While management can act to
reduce the exposure to anthropogenic pressures, few if any
practical large-scale options exist for reducing climate related
stress. Under this framework, effective local management needs to
target moving reef locations, especially those that are moderately
exposed to climate related stress, towards low reinforcing
conditions through improved water quality.

Model limitations

The outputs of this study are constrained, among others, by
the uncertainty conferred on the results of the membership
functions and standardization algorithms. Insufficient or contra-
dictory knowledge on the response of corals to environmental
stimuli in the field and the local adaptation and species-specific
responses to stress is the main limitation to creating predictive
models. In addition, the use of proxies as a substitute for
unavailable environment data, may limit the validity of the
assumptions because of potential weak causation associated with
correlation-based studies. For example, sedimentation and
eutrophication proxy is used as a reinforcing variable and
defined using a monotonically increasing sigmoid function, as
suggested by some field studies [78]. This however contradicts
other findings that suggest increased turbidity, which may result
from increased chlorophyll, reduces the depth penetration of
harmful UVB [36], thereby protecting corals. Similarly, high
nutrients and heterotrophy associated with rich plankton and
high chlorophyll may prevent the severity and impact of coral
bleaching [93,94]. In addition, the results of localized studies
may not necessarily scale to an entire region [95]. The multiple
interactive roles of turbidity is an example of the complex nature
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of multiple stressors, where even a single variable can be viewed
mechanistically as multiple stressors with impacts of varying
scales [1].

Our model assumes a negative linear relationship between
thermal stress and SST variability whereas the relationship may be
more complex [70]. Other studies evaluating large variability areas
have indicated large thermal stress values in regions with the
largest SST variability [9,70]. This could result in uncertainties in
areas of high SST variability in the Arabian Sea, Arabian Gulf,
Eastern Pacific, Western Australia and the coast of Brazil. Further,
the boundaries of our study preclude several other factors that
affect coral health and an ideal systems analysis with unlimited
global data for multiple threats would consider. These include:
ocean acidification; fishery exploitation; hydrodynamic distur-
bances; abundance of bio-eroders and corallivores; and coral
community structure, among others.

While the low-moderate resolution remote sensing data used in
this study demonstrates sufficient variability for explaining large-
scale biological processes [16,23], a coarse grid ignores significant
sub-grid details, and very often introduces approximations and
uncertainties into model results [96]. The spatial and temporal
aggregation, interpolation and integration of data from different
spatial and temporal scales contribute to the errors from mismatch
in spatial and temporal correlation structure [48].

Conclusions

Despite the limitations described above, these results can be
applied to specific reefs if they are downscaled to incorporate
indicators of resilience at reef scale [21,97]. Through the
framework presented, integrating many sources of spatially explicit
data and scientific knowledge has identified global spatial gradients
of radiation, sedimentation and eutrophication stressors and of the
key factors that reduce these stresses. This provides a better
understand how coral reefs might be managed better under
conditions of environmental uncertainty and complexity.

There is high spatial variability of the relative exposures of
corals to radiation and reinforcing stressors. Despite radiation
stress being dominant, most reef locations identified as severely
exposed due to radiation and reinforcing stress are expected to
have a lower severity grade if the reinforcing effect from
sedimentation and eutrophication were managed. Future studies
should focus on incorporating additional coral threats such as
acidification, the removal of grazers, and multiple interacting
stresses. Enhancement of the knowledge base of the physiological
response of corals to environmental stimulus can help improve
future models.

Supporting Information

Appendix S1 A summary of conceptual deductions of
reef coral responses to environmental variables (adopt-
ed from [16]).

DOC)

Appendix S2 A conceptual framework adopted for the
analysis of ocean color data.

(TIF)

Appendix 83 Normal cumulative density functions fitted
on respective environmental parameters (log trans-
formed except for SST and UV).
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Appendix S4 A table of coral exposure indices i.e.
radiation, reducing, reinforcing, each set of coordinates
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